Archive




Volume 9, Issue 4, July 2020, Page: 162-172
Population Total Estimation in a Complex Survey by Nonparametric Model Calibration Using Penalty Function Method with Auxiliary Information Known at Cluster Levels
Janiffer Mwende Nthiwa, Department of Mathematics, Egerton University, Nakuru, Kenya
Ali Salim Islam, Department of Mathematics, Egerton University, Nakuru, Kenya
Pius Nderitu Kihara, Department of Financial and Actuarial Mathematics, Technical University of Kenya, Nairobi, Kenya
Received: Jul. 16, 2020;       Accepted: Aug. 8, 2020;       Published: Aug. 19, 2020
DOI: 10.11648/j.ajtas.20200904.20      View  50      Downloads  35
Abstract
Nonparametric methods are rich classes of statistical tools that have gained acceptance in most areas of statistics. They have been used in the past by researchers to fit missing values in the presence of auxiliary variables in a sampling survey. Nonparametric methods have been preferred to parametric methods because they make it possible to analyze data, estimate trends and conduct inference without having to fully specify a parametric model for the data. This study, therefore, presents some new attempts in the complex survey through the nonparametric imputation of missing values by the use of both penalized splines and neural networks. More precisely, the study adopted a neural network and penalized splines to estimate the functional relationship between the survey variable and the auxiliary variables. This complex survey data was sampled through a cluster - strata design where a population is divided into clusters which are in turn subdivided into strata. Once missing values have been imputed, this study performs a model calibration with auxiliary information assumed completely available at the cluster level. The reasoning behind model calibration is that if the calibration constraints are satisfied by the auxiliary variable, then it is expected that the fitted values of the variable of interest should satisfy such constraints too. The population total estimators are derived by treating the calibration problems at cluster level as optimization problems and solving it by the method of penalty functions. A Monte Carlo simulation was run to assess the finite sample performance of the estimators under complex survey data. The efficiency of the estimator’s performance was then checked by MSE criterion. A comparison of the penalized spline model calibration and neural network model calibration estimators was done with Horvitz Thompson estimator. From the results, the two nonparametric estimator’s performances seem closer to that of Horvitz Thompson estimator and are both unbiased and consistent.
Keywords
Nonparametric Model, Auxiliary Information, Neural Network, Penalized Splines, Optimization Problem
To cite this article
Janiffer Mwende Nthiwa, Ali Salim Islam, Pius Nderitu Kihara, Population Total Estimation in a Complex Survey by Nonparametric Model Calibration Using Penalty Function Method with Auxiliary Information Known at Cluster Levels, American Journal of Theoretical and Applied Statistics. Vol. 9, No. 4, 2020, pp. 162-172. doi: 10.11648/j.ajtas.20200904.20
Copyright
Copyright © 2020 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Reference
[1]
Breidt, F. J. and Opsomer, J. D. (2000). Local Polynomial Regression Estimation in Survey Sampling. Annals of Statistics, 28: 1026 - 1053.
[2]
Clair, l. (2016). Nonparametric kernel estimation methods using Complex survey data, PhD thesis, mcmaster university, Main St. West, Hamilton Ontario.
[3]
Cochran, W. G.. (1977). Sampling techniques (3rd ed.)., New york: John Wiley & sons.
[4]
Deville J. C. and Sarndal C. E. (1992). Calibration Estimators in Survey Sampling. Journal of the American Statistical Association, 87: 376-382.
[5]
Kihara, P. N. (2012). Estimation of Finite Population Total in the Face of Missing Values Using Model Calibration and Model Assistance on Semiparametric and Nonparametric Models. PhD thesis, JKUAT.
[6]
Montanari, G. E. and Ranalli, S. (2003). Nonparametric Model Calibration Estimation in Survey Sampling. Journal of Official Statistics, 2: 1-40.
[7]
Nordbotten, S. (1996). Neural Network imputation applied to the Norwegian 1990 population census data. Journal of Official Statistics, 12: 385-401.
[8]
Otieno et al., (2007). Nonparametric Model Assisted Model Calibrated Estimation in Two Stage Survey Sampling. The East African Journal of Statistics, 3: 261-281.
[9]
Rao, S. S. (1984). Optimization Theory and Applications. Wiley Eastern Limited Sahar, Z. Z. (2012). Model-based methods for robust finite population inference in the presence of external information. The University of Michigan.
[10]
Sahar, Z. Z. (2012). Model-based methods for robust finite population inference in the presence
[11]
of external information. The University of Michigan.
[12]
Sarndal, C. E., Swensson B. and Wretman J. (1992). Model Assisted Survey Sampling. Springer-Verlag, New York.
[13]
Wu, C. and Sitter, R. R. (2001). A Model Calibration Approach to Using Complete Auxiliary Information from Survey Data. Journal of American Statistical Association, 96: 185-193.
Browse journals by subject