Archive




Volume 9, Issue 4, July 2020, Page: 127-135
Quality Characterisation and Capability Assessment of a Tobacco Company
Adepeju Opaleye, Industrial and Production Engineering, University of Ibadan, Ibadan, Nigeria
Oladunni Okunade, Industrial and Production Engineering, University of Ibadan, Ibadan, Nigeria
Taiwo Adedeji, Industrial and Production Engineering, University of Ibadan, Ibadan, Nigeria
Victor Oladokun, Industrial and Production Engineering, University of Ibadan, Ibadan, Nigeria
Received: May 11, 2020;       Accepted: May 28, 2020;       Published: Jun. 17, 2020
DOI: 10.11648/j.ajtas.20200904.16      View  29      Downloads  27
Abstract
This is an empirical study on the application of SPC techniques for monitoring and detecting variation in the quality of locally produced tobacco in Nigeria. The result provides base evidence for intervention in the quality behavior of the heavily automated tobacco production process in which slight undetected deviation can result in significant wastes. An observational study was carried out within the primary manufacturing department of the tobacco company. The study analysis was conducted using descriptive statistics, goodness of fit test and SPC charts.. These charts were constructed and examined for significant variation in expected output quality as well as the capability of the process. The goodness of fit test and SPC identified CTQs that were approximately normally distributed and out of process control across periods of observations. These deviations were not evident with the summary data or its presentation on the histogram. Subsequently, the out of control process charts were transformed to in-control charts by repetitive elimination of out-of-control instances. At this state, it was observed that the process was only capable of meeting specification for the dust level for all capability measures. These results illustrate a proof of SPC for process monitoring and product quality improvement.
Keywords
Critical-to-Quality, Goodness of Fit, Process Capability, Process Improvement
To cite this article
Adepeju Opaleye, Oladunni Okunade, Taiwo Adedeji, Victor Oladokun, Quality Characterisation and Capability Assessment of a Tobacco Company, American Journal of Theoretical and Applied Statistics. Vol. 9, No. 4, 2020, pp. 127-135. doi: 10.11648/j.ajtas.20200904.16
Copyright
Copyright © 2020 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Reference
[1]
T. Antony, J., and Taner, “A conceptual framework for the effective implementation of statistical process control,” Bus. Process Manag. J., vol. 9, no. 4, pp. 473–489, 2003.
[2]
J. C. Benneyan, “Performance of Number-Between g-Type Statistical Control Charts for Monitoring Adverse Events,” Health Care Manag. Sci., vol. 4, pp. 319–336, 2001.
[3]
D. C. Montgomery, Statistical Quality Control, 7th ed. MA: John Wiley & Sons, 2012.
[4]
P. Gejdoš, “Continuous Quality Improvement by Statistical Process Control,” Procedia Econ. Financ., vol. 34, no. 15, pp. 565–572, 2015.
[5]
S. Sousa, N. Rodrigues, and E. Nunes, “Application of SPC and quality tools for process improvement,” Procedia Manuf., vol. 11, no. June, pp. 1215–1222, 2017.
[6]
Djekic, I., Smigic, N., Tomic, A., and Gajkovic, A., “Statistical Process Control in Serbian Food Packaging,” J. Qual. Res., vol. 8, no. 3, pp. 323-334 I, 2014.
[7]
Y. Kano, Manabu and Nakagawa, “Manabu Kano and Yoshiaki Nakagawa (2008), Data-based process monitoring, process control, and quality improvement: Recent developments and applications in steel industry, Computers & Chemical Engineering, Volume 32, Issues 1–2, January 2008, Pages 12-24,” Comput. Chem. Eng., vol. 32, no. 1–2, pp. 12–24, 2008.
[8]
J. Mason, B., Antony, “Statistical process control: an essential ingredient for improving service and manufacuring quality",” Manag. Serv. Qual. An Int. J., vol. 10, no. 4, pp. 233–238, 2000.
[9]
I. Madanhire and C. Mbohwa, “Application of Statistical Process Control (SPC) in Manufacturing Industry in a Developing Country,” Procedia CIRP 40, vol. 40, pp. 580–583, 2016.
[10]
S. Skouteris, G., Webb, D. P., Felix-Shin, K. L., Rahimifard, “Assessment of the capability of an optical sensor for in-line real-time wastewater quality analysis in food manufacturing,” Water Resour. Ind., vol. 20, p. Pages 75-81, 2018.
[11]
J. Michalska, “The intellectual capital as a chance on improvement of the quality management in the conditions of globalisation” INTELLECT’. Factors creating the quality management in the enterprise,” in Proceedings of the Scientific International,. (in Polish), 2005, pp. 187–191.
[12]
W. M. Evans, J. R., and Lindsay, The Management and Control of Quality, 6th Editio. South-Western - Thomson Learning., 2005.
[13]
A. M. Farooq, R. Kirchain, H. Novoa, and A. Araujo, “Cost of Quality : Evaluating Cost-Quality Trade-Offs for Inspection Strategies of Manufacturing Processes Cost of quality : Evaluating cost-quality trade-o ff s for inspection strategies of manufacturing processes,” Int. J. Prod. Econ., vol. 188, no. April, pp. 156–166, 2017.
[14]
W. Shewhart, Statistical Method from the Viewpoint of Quality Control. Dover Publications. New York: Dover Publications, 1939.
[15]
Z. Holub, M., Jankovych, R., Andrs, O., Kolibal, “Capability assessment of CNC machining centres as measuring devices,” Meas. Vol., vol. 118, pp. 52–60, 2018.
[16]
D. T. Wen, C., Xu, J., Ai, Q. S., Liu, Q., Zhou, Z., Phamc, “Manufacturing Capability Assessment for Human-Robot Collaborative Disassembly Based on Multi-Data Fusion,” Procedia Manuf., vol. 10, pp. 26–36, 2017.
[17]
E. Kureková, “Measurement Process Capability – Trends and Approaches,” Meas. Sci. Rev., vol. 1, no. 1, 2001.
[18]
V. Kane, “Process capability indices,” J. Qual. Technol., vol. 18, pp. 41-52., 1986.
[19]
M. J. Chandra, Statistical Quality Control. United States of America: CRC Press LLC, 2001.
[20]
F. A. Chan, L. K., Cheng, S. W., Spiring, “A new measure of process capability,” J. Qual. Tech, vol. 20, pp. 162–175, 1988.
[21]
T. C. Hsiang, “A tutorial on quality control and assurance- The Taguchi method,” Las Vegas:, 1985.
[22]
Kotz, S., Johnson, N. L., “Process Capability Indices – A Review, 1992-2000.,” J. Qual. Technol., vol. 34, no. 1, pp. 2–19, 2002.
[23]
B. Spiring, F., Cheng, S., Yeung, A., & Leung, “Discussion,” J. Qual. Technol., vol. 34, no. 1, 2002.
[24]
R. C. Gupta, Statistical Quality Control. 7th Ed. Khanna Publishers, 2003.
Browse journals by subject